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Abstract
We present several classes of reinforcement learn-
ing algorithms that safely generalize to Markov
decision processes (MDPs) not seen during train-
ing. Specifically, we study the setting in which
some set of MDPs is accessible for training. For
various definitions of safety, our algorithms give
probabilistic guarantees that agents can safely gen-
eralize to MDPs that are sampled from the same
distribution but are not necessarily in the train-
ing set. These algorithms are a type of Seldo-
nian algorithm (Thomas et al., 2019), which is a
class of machine learning algorithms that return
models with probabilistic safety guarantees for
user-specified definitions of safety.

1. Introduction
In reinforcement learning (RL), it is often desirable for
trained agents to be robust to changes in their environments
and tasks. For example, users of RL algorithms may wish to
train an agent using an imperfect simulation and then deploy
the agent in the real world. Unfortunately, trained RL agents
are often sensitive to changes in their environment: even
slight modifications may catastrophically upset an agent’s
ability to perform a task (Witty et al., 2018). In this work, we
present a class of RL algorithms, called high confidence gen-
eralization algorithms (HCGAs), that provide probabilistic
safety guarantees for agents’ performances for environments
not necessarily seen during training. These guarantees guard
against catastrophic outcomes and ensure that agents can
successfully generalize to entire distributions of tasks.

This work focuses on the setting where an RL task is repre-
sented by some distribution of Markov decision processes
(MDPs). We assume that the agent is trained on some set
of MDPs (that is, a training set) drawn independently and
identically distributed (i.i.d.) from this distribution. Our
algorithms then provide guarantees regarding an agent’s per-
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formance on MDPs drawn from the distribution, including
MDPs not in the training set.

HCGAs first train using a standard RL algorithm and then
perform a safety test on the resulting policy. The safety
test provides guarantees on the trained agent’s performance.
While some sophistication can be added to the learning pro-
cess to account for the nature of the task, in their most basic
form, the algorithms presented in this work are agnostic
to the policy structure, the RL algorithm used for training,
and the hyperparameters of the training algorithm. Also, no
assumptions are required about the MDPs or the distribution
from which they are drawn. These properties make HCGAs
versatile and robust; they can be employed in any setting
matching the above description, regardless of the training
algorithm and policy representation used for the task.

The contributions of this paper are: 1) a presentation and
analysis of HCGAs, and a proof that they provide the prob-
abilistic guarantees that we claim; 2) a presentation and
analysis of a class of HCGAs which provides guarantees
regarding the expected performance on the MDP distribu-
tion representing the task; 3) the proposal and analysis of an
extension to the class of HCGAs described above; this exten-
sion uses control variates designed for the HCGA setting to
improve these algorithms without violating the safety guar-
antees; 4) a presentation and analysis of classes of HCGAs
with risk-sensitive performance guarantees; and 5) empirical
results from two environment distributions that demonstrate
that the safety guarantees hold in practice and that the con-
trol variate extension may improve results without violating
the safety guarantees.

2. Related Work
Safe policy improvement with baseline bootstrapping
(SPIBB) (Laroche et al., 2019) is a class of safe RL al-
gorithms with some similarities to HCGAs. Both classes of
algorithms generalize with high confidence to some target
MDP or MDPs that may be inaccessible for training. How-
ever, the problem setting differs in several ways. Unlike
HCGAs, SPIBB algorithms do not have direct access to any
environment. Instead SPIBB algorithms have a baseline
policy which they aim to improve and data (state, action,
reward, state tuples) gathered from the target MDP using
this baseline policy (some SPIBB algorithms need not have
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direct access to the baseline policy (Simão et al., 2020)).
These algorithms use this data to return a policy that is prob-
abilistically guaranteed to match or exceed the performance
of the baseline policy in the target MDP. Unlike SPIBB
algorithms, HCGAs have direct access to a set of MDPs,
may not have any data from any target or "test" MDPs, and
create a policy from scratch rather than improving upon a
baseline.

In RL, transfer learning (TL) is the study of how a policy
or other knowledge may be transferred between similar but
distinct tasks. The HCGA problem setting and approach
falls under the broad category of TL. Taylor & Stone (2009)
provide a comprehensive survey of TL techniques for RL.

Much of the RL TL literature proposes RL algorithms de-
signed specifically to leverage the TL setting. Konidaris
& Barto (2006) investigate how an RL agent may, over a
series of similar tasks, learn a reward-shaping function that
speeds up the learning of each individual task. Taylor et al.
(2007) investigate how a policy may be transferred between
two tasks with known intertask mappings between states
and actions. Doshi-Velez & Konidaris (2016) and Killian
et al. (2017) develop the formulation of hidden parameter
Markov decision processes (HiP-MDPs). The HiP-MDP
framework provides specialized model-based algorithms
and is designed for TL between MDPs that are similar but
differ slightly in dynamics. These are just a few of the many
papers that propose learning algorithms designed to leverage
specific properties of the TL setting.

The class of algorithms introduced in this work is agnostic
to the specific learning algorithm used for initially training
the agent: the RL algorithm could be a classical Q-learning
algorithm (Watkins, 1989), or it could be a sophisticated
algorithm designed to exploit some other aspect of the TL
setting (for example, one of the TL algorithms above).

In TL, the zero-shot setting requires agents to perform well
on unseen tasks without any training time on these tasks.
Several papers discussed above fall partly or entirely within
this category. Irpan & Song (2019) analyze this RL gen-
eralization setting and propose the principle of unchanged
optimality, which states that “when designing a general-
ization benchmark, there should exist a [policy] which is
optimal for all MDPs.” Oh et al. (2017) discuss zero-shot TL
for RL and propose a novel approach involving hierarchical
skills.

HCGAs are motivated by, and most intuitively applicable
to, the zero-shot setting where the principle of unchanged
optimality holds, but they can be leveraged in other settings.
For example, HCGAs may be used to provide guarantees
of safe-but-suboptimal performance for some MDP distri-
bution in which this principle does not hold. The resulting
safe-but-suboptimal policy may then be fine-tuned in some

specific application environment, as in the meta-learning
setting (Finn et al., 2017).

Wang et al. (2019) study generalization in RL in the set-
ting in which the environment transitions can be viewed as
deterministic given some random variables that represent
the stochasticity. They derive generalization bounds and
guarantees for this setting.

Cobbe et al. (2018), Witty et al. (2018), Zhang et al. (2018),
and Song et al. (2020) study the phenomena of generaliza-
tion and overfitting in RL. While our work does not directly
study overfitting, our empirical studies make it evident that
when our algorithms cannot produce safe solutions, it is
primarily because the agent is overfit to the training set; in
some sense, the agent “memorizes” the training task(s) in
a way that is not generalizable to other similar tasks. Our
work provides algorithm designers and end-users with a
principled and safe method of ensuring that their RL algo-
rithms and agents do not overfit and fail to generalize in
performance-critical applications.

3. Background and Notation
Consider an MDP, m = (S,A,R, P,R, d0, γ). S is the
set of possible states of the MDP, A is the set of possi-
ble actions, and R is the set of possible rewards. We as-
sume that S and A are finite to simplify notation, but the
methods in this paper extend to settings where these sets
are infinite and uncountable. An episode is a sequence
of states, actions, and rewards from time t = 0 to an in-
definite value of t. The random variables St, At, and Rt
are the state, action, and reward at time t. The distribu-
tion of the initial state, S0, is given by d0 : S → [0, 1],
and γ ∈ [0, 1] is a parameter called the reward discount
factor. A policy π : S × A → [0, 1] defines the proba-
bility of taking each action in each state. Let π(s, a) :=
Pr(At=a|St=s). We define a policy to be parameterized
by some θ in some feasible set Θ, such that different val-
ues of θ result in different policies. P :S×A×S→[0, 1]
is the transition function, defined as P (s, a, s′) :=
Pr(St+1=s′|St=s,At=a). R:S×A→[0, 1] is the reward
function, defined as R(s, a) := E[Rt|St=s,At=a].

In the typical RL setting, an agent’s goal is find a θ that max-
imizes the objective function J(θ) := E [

∑∞
t=0 γ

tRt|θ] ,
where conditioning on θ denotes the use of a policy parame-
terized by θ. In this work, rather than a single MDP, we con-
sider a distribution of MDPs. For all MDPs, we define the
objective for MDP m as Jm(θ) := E [

∑∞
t=0 γ

tRt|θ,m] ,
where “given θ, m” indicates that the environment is MDP
m and that the agent is running the policy parameterized by
θ. Without loss of generality and to simplify later deriva-
tions, we assume that Jm(θ) ∈ [0, 1] for all θ ∈ Θ.

Below, we typically denote an individual MDP as Mk,
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where k is some integer (for example, M1), a distribution
over some set of MDPs as µ, a set of k MDPs as M1:k, and
the set of all possible sets of MDPs asM. We use M1 ∼ µ
to denote that a single MDP M1 is sampled from µ, and
M1:k ∼ µ to denote that a set of k MDPs M1:k is sampled
i.i.d. from µ. When a set of MDPs has a particular name, we
denote it asMname below. For example, we denote a training
set of MDPs as Mtrain. We refer to the MDPs in such a set
as the [name] MDPs (for example, the “training MDPs”).

We define the performance (the objective) on a probability
distribution of MDPs, µ, as Jµ(θ) := E[JM1(θ)|M1 ∼ µ],
and the performance given a finite set of MDPs of size
k, M1:k, as JM1:k

(θ) := 1
k

∑
m∈M1:k

Jm(θ). We define
the random variable representing an episodic return for an
MDP m as Gm(θ) :=

∑∞
t=0 γ

tRt, where the policy used is
parameterized by θ.

Let the MDPs M1, . . . ,Mk denote the individual MDPs in
some finite set of MDPs M1:k. For some policy parameter-
ized by θ, we define the sample standard deviation of the
expected returns, σ̂J(θ,M1:k), to be the sample standard
deviation of the set {JM1

(θ), JM2
(θ), . . . , JMk

(θ)}.

4. Problem Statement
The primary goal of high confidence generalization algo-
rithms (HCGAs) is the same as in the standard RL setting:
to maximize some objective. Specifically, these algorithms
maximize Jµ(θ), where µ is some arbitrary distribution of
MDPs of interest; however, they do so safely. That is, they
maximize the objective while guaranteeing that some user-
defined safety constraint based on the objective or episodic
returns holds. Let f : Θ ∪ {NSF}→[0, 1] be some safety
function that measures the performance or episodic returns
for some solution in Θ ∪ {NSF} (NSF is defined below).
All algorithms in this paper guarantee that

Pr (f(output) ≥ j) ≥ 1− δ, (1)

where δ ∈ (0, 1) is a user-specified probability, j ∈ [0, 1] is
a user-defined safety threshold, and where in this one equa-
tion only, “output” ∈ Θ ∪ {NSF} is a random variable that
represents the policy parameters output by our algorithm.
This output is defined more formally below.

Any algorithm that provides this probabilistic guarantee is
a Seldonian algorithm as proposed in Thomas et al. (2019).
Seldonian algorithms output models (policies in the RL set-
ting) with probabilistic guarantees that the models are safe
for a user-defined safety metric, with any desired probabil-
ity.

This work considers three definitions of the safety func-
tion f : one definition based on the expected objective Jµ
(Section 6), one risk-sensitive definition based on the “worst-
case” MDPs in µ (Section 8.2), and one risk-sensitive def-

inition based on the “worst-case” episodes (Section 8.3).
These definitions of f are formally defined in the sections
below. For settings where other definitions of safety might
be more appropriate, new HCGAs can be created as needed
using the approach outlined in this paper.

Consider the case where a user defines an unreasonable
value of δ or an unreasonable safety constraint. For exam-
ple, if the safety constraint requires Jµ(θ) > 0.9, where
θ parameterizes the policy returned by the algorithm, but
Jµ(θ′) < 0.9 for all θ′ ∈ Θ, then this safety constraint
cannot be satisfied. For the algorithm to handle such a case
safely, we must give it a means to say “I cannot do that.” No
Solution Found (NSF) is this means.

NSF is the output produced by the algorithm when it does
not have sufficient confidence that its “best-guess” candidate
solution in Θ (defined formally below) will be safe to re-
turn; we always define NSF to be safe. Formally, we define
f(NSF) := j for all definitions of f . Notice that these algo-
rithms do not give any guarantees concerning the probability
of returning a solution that is not NSF: a (useless) algorithm
that always returns NSF would technically satisfy the guar-
antee above. Note that meeting the safety constraint is not
the only goal of the algorithm; rather, the algorithm’s goal
is to maximize the expected performance while meeting the
safety constraint. Although the naive always-return-NSF al-
gorithm would satisfy the safety constraint, its performance
would be poor in terms of the primary objective.

This formulation means that our approach is limited to ap-
plications where it is acceptable for the algorithm to not
return a solution. The advantage of our approach is that
these algorithms will never violate the probabilistic safety
guarantees, even if the user-defined values are impossible to
satisfy.

In this paper, we study the problem of finding an HCGA,
alg, that produces a policy that maximizes the objective
function, Jµ, while guaranteeing that (1) holds, for various
definitions of f . LetM be the set of possible sets of MDPs
that an HCGA could take as input. Formally, we define an
HCGA, alg, as the function alg :M→ Θ ∪ {NSF}. We
can now use this definition to rewrite (1) more formally:
Pr[f(alg(Macc)) ≥ j] ≥ 1 − δ, where Macc ⊂ M (this
set is defined below and is sampled from µ) is the random
input to the algorithm.

5. Algorithm Template
The class of algorithms given in this section leverages the
Seldonian framework to tackle a difficult and important
problem: how to correctly give high-confidence guarantees
of generalization. A summary of these algorithms follows.
Let Macc be a set of MDPs accessible to the algorithm, sam-
pled i.i.d. from µ. An HCGA partitions Macc into Mtrain and
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Msafety; Mtrain is used for training, and Msafety is used for a
safety test. The ratio of the sizes of these two sets can be
viewed as a hyperparameter. The algorithm will satisfy the
safety guarantees regardless of the setting of this hyperpa-
rameter, but might return NSF less frequently for certain
values of this parameter. As a simple heuristic, we parti-
tion the data into two sets of equal size in all experiments.
Additionally, we assume each set consists of at least two
MDPs (to satisfy the requirements of all algorithms below).
Next, the HCGA uses an RL algorithm and Mtrain to obtain
a trained candidate policy, θc.

Finally, the algorithm performs a safety test: it uses Msafety
to determine whether or not this policy meets some defi-
nition of safety for µ. Specifically, the HCGA uses some
high-confidence bounding function b : (Θ ∪ {NSF}) ×
M × (0, 1) → [0, 1]. For all definitions of f below, we
give one or more definitions of b. Each of these bounding
function definitions, combined with the template below,
forms a complete algorithm. The HCGA uses the bound-
ing function to, with the specified confidence, establish a
high-confidence lower bound on the value of f(θc). If the
candidate policy is safe with the specified confidence, that
policy is returned. Otherwise, the algorithm returns NSF.
This general form of HCGAs is given in Algorithm 1.

Algorithm 1 HCGA Template
Input : Feasible set Θ, a set of MDPs Macc, user-defined

threshold j, probability 1−δ, and high-confidence
bounding function b.

Output : θ ∈ Θ ∪ {NSF}
1 Partition Macc into two data sets, Mtrain and Msafety;
2 Compute a θc ∈ argmaxθ∈ΘJMtrain(θ);
3 if b(θc,Msafety, δ) ≥ j then return θc;
4 else return NSF;

For all θ ∈ Θ ∪ {NSF} and δ ∈ (0, 1), if Algorithm 1
takes a bounding function b such that Pr(b(θ,Msafety, δ) ≤
f(θ)) ≥ 1− δ, then the algorithm will return a safe result
with at least probability 1− δ. Formally:

Theorem 1. If Pr(b(θ,Msafety, δ) ≤ f(θ)) ≥ 1− δ, then

Pr[f(alg(Macc)) ≥ j] ≥ 1− δ.

Proof. See supplementary material Section A.

Notice that in practice, alg can include stochasticity in the
optimization process (for example, stochasticity due to the
transition function, policy, etc.). One way to capture this
stochasticity is to have the algorithm take a random seed as
input. For example, in the case where the seed is an integer,
alg would be the function alg :M× Z→ Θ ∪ {NSF}.
For brevity, we make this random seed input implicit.

In Figure 2 in supplementary material Section D, we provide
a concise summary of the four HCGAs that we present and
study in this paper.

6. Expected Return HCGAs
In this section, we present a class of HCGAs with
safety constraints specifying that the expected performance
should be above some threshold. Specifically, the algo-
rithms in this class define the safety function f to be Jµ,
and therefore give the following probabilistic guarantee:
Pr (Jµ(alg(Macc)) ≥ j) ≥ 1− δ.

Two examples of high-confidence bounding functions for
this definition of safety are below, based on Hoeffding’s
inequality (Hoeffding, 1994) and Student’s t-test (Student,
1908), respectively:

b(θ,Msafety, δ):=JMsafety(θ)−
√

ln(1/δ)/(2|Msafety|), (2)

b(θ,Msafety, δ)

:= JMsafety(θ)−
σ̂J(θ,Msafety)t1−δ,|Msafety|−1√

|Msafety|
,
(3)

where the sample standard deviation function σ̂J used in (3)
is defined in Section 3, and the t∗,∗ used in (3) represents
the inverse cumulative distribution function of the Student’s
t distribution. The t-test bound represented by (3) will often
be tighter than that represented by (2), but the t-test bound
requires the assumption that the performances of θc for the
MDPs in Msafety are normally distributed. This assump-
tion may not be reasonable, especially for small values of
|Msafety|. However, by the central limit theorem, it is often
a reasonable assumption for large values of |Msafety|.

In Algorithm 3 in supplementary material Section L, we give
the algorithm represented by the bounding function defined
in (2). This serves as an example of how to apply bounding
functions to Algorithm 1 to form a complete HCGA. For all
other variants, such as that represented by (3), we provide
only the bounding functions.

7. Expected Return HCGAs with Control
Variates

In this section, we consider a slightly modified problem
setting: one in which 1) each MDP is parameterized by a
known set of parameters, pi, in an arbitrary space, P (for
example, the space of possible friction coefficients), and
2) parameters of MDPs can be sampled from the entire
distribution of MDPs without needing to (or necessarily
having the capability to) construct or run episodes of these
MDPs. This setting is of interest when training in simulation
using a distribution of MDPs, since the parameters of these
MDPs and the MDP distribution, µ, are usually known.
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One way to exploit this additional information is to learn
a control variate for the candidate policy’s expected return
given MDP parameters pi ∈ P , and to use this control
variate to derive unbiased estimates of Jµ that have lower
variance than the estimates used in the previous section.
These lower variance estimates can then be used in the
bounding functions to reduce the probability of returning
NSF without compromising the safety guarantees. This
method uses a constant which can take any real value; we
propose two theoretically grounded methods for choosing
optimal values for this constant.

In this section, we write pi ∈ P to denote the parameters of
the ith MDP, Mi. Note that E[(some expression involving
pi)|Mi ∼ µ] means that pi are the parameters of MDP Mi.

We introduce a control variate that takes MDP parameters
pi ∈ P as input, and estimates the objective value of the
corresponding MDP Mi for the policy parameterized by
θ. Formally, we write this control variate as the function
v̄θ : P → [0, 1] (recall that we assume the objective and
returns are normalized to [0, 1]). For example, given some
θ ∈ Θ and MDP Mi, v̄θ(pi) estimates JMi

(θ). The control
variate can be an arbitrary function trained with an arbitrary
supervised learning algorithm as described below.

Define Zi(θ, c, v̄θ, µ):=JMi
(θ)−c(v̄θ(pi)−E[v̄θ(pj)|Mj

∼ µ]), for some constant c ∈ R. For brevity, we abbreviate
Zi(θ, c, v̄θ, µ) as Zi. Let M1,M2, . . . ,Mk be the safety
MDPs. While computing the safety test, instead of using
JM1(θ), JM2(θ), . . . , JMk

(θ) to estimate the mean, we can
instead use the unbiased and potentially lower variance
estimates of the mean Z1, Z2, . . . , Zk.

Property 1. For all θ ∈ Θ, for all c ∈ R, Zi is an unbiased
estimator of Jµ(θ).

The proofs of Properties 1 and 2 and Corollary 1 are given
in supplementary material Section B.

Next, we address the question of how to choose a value
of c to minimize variance. To estimate an optimal value,
we derive an expression for the variance of Zi and then
minimize this expression with respect to c. For the purposes
of Property 2 and Corollary 1 below, we assume that the
learned control variate is not a constant (that is, it varies
with its input, the MDP parameters). This assumption is
given more formally in supplementary material Section B.

Property 2.

argmin
c∈R

Var(Zi|Mi ∼ µ)

=E
[
(JMi

(θ)−E[JMk
(θ)|Mk ∼ µ])

× (v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ])
∣∣∣Mi ∼ µ

]
/ E

[
(v̄θ(pi′)−E[v̄θ(pj′)|Mj′ ∼ µ])2

∣∣∣Mi′ ∼ µ
]
,

where × and / denote scalar multiplication and division
respectively, split across multiple lines.

An alternative to this method of calculating c follows. Ide-
ally, the control variate v̄θ(pi) will converge to a perfect
estimator of JMi

(θ) given sufficient training data. Consider
the value of c for the setting in which the control variate has
converged to a perfect estimator: v̄θ(pi) = JMi(θ).

Corollary 1. If v̄θ(pi) = JMi
(θ), then

argmin
c∈R

Var(Zi|Mi ∼ µ) = 1.

Again, the proofs of Properties 1 and 2 and Corollary 1 are
given in supplementary material Section B.

Given these properties, it is straightforward to apply control
variates to expected value HCGAs such as the Student’s t-
test HCGA: 1) After training, before the safety test, evaluate
JMi(θ) for all Mi ∈ Mtrain. 2) Use a supervised learn-
ing algorithm of choice to learn a v̄θ(pi), using the JMi(θ)
values (from the training data). This is a simple regres-
sion problem. 3) Use Property 2 to estimate the optimal c
value, using the training MDPs, or choose c=1 (we compare
and analyze these two methods in supplementary material
Section M). 4) Proceed with the safety test using MDPs
M1,M2, . . . ,Mk ∈Msafety using the set {Z1, Z2, . . . , Zk}
instead of the set {JM1

(θ), JM2
(θ), . . . , JMk

(θ)} to calcu-
late the value of the high-confidence bounding function
b. These steps are given more formally in Algorithm 2 in
supplementary material Section C.

The approach proposed in this section may be particularly
advantageous using bounds that vary significantly with the
variance of the estimates (for example, Student’s t-test).
However, even in the case of bounds that do not vary sig-
nificantly with the variance of the estimates (for example,
Hoeffding’s), an unbiased but lower variance estimator of
the mean can be considered a strict improvement to the
HCGAs proposed in the previous section.

8. Risk-Sensitive HCGAs
The above bounds concern the expected, or average, return
j. In other words, they guarantee that a solution will, with
user-specified probability 1− δ, result in an average return
greater than or equal to some j. Such solutions could, how-
ever, regularly result in MDPs drawn from µ with objective
function values less than j or episodes for MDPs drawn
from µ with returns less than j. Even a majority of MDPs
and/or episodes could result in objective function values
and/or returns, respectively, of less than j; as long as the
expected return is above j, the criterion above is satisfied.

For this reason, the expected value may not be a suitable
measure of safety in some settings. This section proposes
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two alternative definitions of safety based on the conditional
value at risk (CVaR): bounds concerning the distribution
of expected returns for an MDP drawn from µ, and bounds
concerning the distribution of episodic returns for an MDP
drawn from µ. Supplementary material Section E introduces
and defines CVaR for readers unfamiliar with it.

Value at risk (VaR) is another popular risk measure. How-
ever, VaR has the disadvantage of being insensitive to rare
catastrophic risks (and such risks are one of the primary mo-
tivations for definitions of safety not based on the expected
value). For this reason, we only introduce CVaR-based HC-
GAs in this work. However, one could create VaR-based
HCGAs for situations where VaR might be a more appro-
priate measure of safety (see supplementary Section E for
a brief discussion and, for readers unfamiliar with it, an
introduction to VaR).

8.1. CVaR Bounds

Our algorithms require high-confidence guarantees on the
CVaR of a policy’s performance or returns, and so we re-
quire sample-based bounds on the CVaR of a random vari-
able. In this section, we review such bounds.

We analyze the bounds of Brown (2007) and Thomas &
Learned-Miller (2019). The latter bound tended to be tighter
in our experiments, so we use it for our results, but the
former bound is relatively simple to write and manipulate,
and not strictly looser, so it may be more desirable in some
applications. Therefore, we present the required analyses
for both bounds.

Conventions differ as to whether VaR and CVaR are with
respect to the lowest or highest possible values of the dis-
tribution (Thomas & Learned-Miller, 2019). We use the
convention that they are with respect to the lowest possible
values, since it better matches the RL setting, where lower
values are less desirable. In Section H of the supplementary
material, we provide a proof that the “left tail” bound given
in Property 3 below is equivalent to the “right tail” bound
of Thomas & Learned-Miller (2019). In Sections F and G
of the supplementary material, we provide a similar bound
and proof for the bounds of Brown (2007).

Let X be a random variable such that supp(X) ⊆ [a, b].
Given a sample of X of size n, let W0 := a, and
W1, . . . ,Wn be the order statistics of the sample (that is, the
sample sorted into increasing order). Thomas & Learned-
Miller (2019) bound CVaR with high confidence:

Property 3. For all δ ∈ (0, .5]:

Pr

(
CVaRα(X) ≥W0 +

1

α

n∑
i=1

(Wn+1−i −Wn−i)

×max

(
0,
i

n
−
√

ln(1/δ)

2n
− (1− α)

))
≥ 1− δ,

where × denotes scalar multiplication.

8.2. High Confidence Generalization Across MDPs

Instead of a bound on the value of Jµ, we may instead
wish to design an algorithm that, with specified confi-
dence 1 − δ, returns a solution with guarantees regarding
risk measures for an MDP drawn from µ. Such bounds
are appropriate when the user desires safety constraints
on the expected return for the “worst-case MDPs” in µ.
Specifically, for all θ ∈ Θ ∪ {NSF}, the algorithm in this
class uses the following definition of the safety function:
f(θ) := CVaRα(JM1

(θ)|M1 ∼ µ). Therefore, the prob-
abilistic guarantee is Pr(CVaRα(JM1(alg(Macc))|M1 ∼
µ) ≥ j|Macc ∼ µ) ≥ 1− δ.

Recall that M1 ∼ µ denotes a single MDP M1 sampled
from µ, and Macc ∼ µ denotes a set of MDPs Macc sampled
i.i.d. from µ. In the inequality above, note thatM1 andMacc
are sampled independently of each other.

Given a sample of size n consisting of JM1(θ), . . . , JMn(θ),
where M1, . . . ,Mn are the safety MDPs, let J1, . . . , Jn
be the n order statistics of that sample (that is, the ob-
jective values of the n MDPs sorted in increasing order).
Define J0 := 0. Applying Property 3, the bounding
function is: b(alg(Macc),Msafety, δ):=

1
α

∑n
i=1(Jn+1−i −

Jn−i) max(0, in −
√

ln(1/δ)
2n − (1− α)). Recall that, com-

bined with Algorithm 1, this bounding function represents a
complete algorithm. We refer to this algorithm as the CVaR
MDP HCGA.

8.3. High Confidence Generalization for All Episodes

Alternatively, we may instead wish to design an algorithm
that, with specified confidence 1− δ, returns a solution with
guarantees regarding risk measures for episodic returns for
episodes drawn from µ. Such bounds are useful when the
distribution of episodic returns is more relevant to safety
than expected returns. Specifically, for all θ ∈ Θ ∪ {NSF},
the algorithm in this class uses the following definition of
safety: f(θ) := CVaRα(GM1(θ)|M1 ∼ µ). In other words,
users may wish to use this class of algorithms when risk
measures on “worst-case episodes” are the best measure of
safety. For example, when applying RL to diabetes manage-
ment (Bastani, 2014), a risk-sensitive measure of episodic
returns such as CVaR may be a better safety constraint than
the guarantees above: a single bad “episode” could result in
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the death of a patient, regardless of the value of the objective
function for µ (Section 6) or the objective function for an
MDP drawn from µ (Section 8.2).

This is different from the algorithm described in Section 8.2
in that there is no expectation inside the CVaR function: the
algorithm considers the returns of individual episodes rather
than the expected returns of those episodes (that is, rather
than the objective function). The probabilistic guarantee
is Pr(CVaRα(GM1

(alg(Macc))|M1 ∼ µ) ≥ j|Macc ∼
µ) ≥ 1− δ.

Given a sample of size n consisting of GM1
(θ),

. . . , GMn
(θ), where M1, . . . ,Mn are the safety MDPs,

let G1, . . . , Gn be the n order statistics of that
sample. Define G0:=0. The bounding function
is b(alg(Macc),Msafety, δ) := 1

α

∑n
i=1(Gn+1−i −

Gn−i) max

(
0, in −

√
ln(1/δ)

2n − (1− α)

)
. In the results,

we refer to this algorithm as the CVaR Episodic HCGA.

9. Experiments and Results
In this section, we run the four algorithms defined by the
bounds above on two sets of MDPs: generalization grid-
world and dynamic arm simulator one (DAS1) (Blana et al.,
2009). In both cases, we define µ to be a uniform distribu-
tion over the sets of MDPs. Generalization gridworld is a
set of gridworlds in which randomly placed “cliffs” send the
agent back to the start state, but a fixed path from the start
state to the goal is always clear of cliffs. As a result, while
individual MDPs may have many optimal policies, there is
only one optimal policy for the entire set.

DAS1 is a detailed and biomechanically plausible human
arm simulator with two joints and six muscles. This envi-
ronment simulates functional electrical stimulation (FES)
for paralyzed arm muscles; it has been used in biomedical
research studying patients suffering from paralysis due to
brain or spinal cord injuries (Blana et al., 2009). When
patients suffer paralysis due to these types of injuries, the
arms and other areas of the body still have the potential to
move; the muscles and the local nerves are intact, but the
connection to the brain is severed. Advances in the science
of FES could someday allow patients paralyzed below the
neck to be able to move their arms and other parts of their
body again. One challenge of FES is that controllers based
on models or trained in simulation often do not perform
well when applied to real physiological systems, in part
because of the physiological variations between individual
subjects (Jagodnik (2014), see Sections 1.4 and 1.5). In
fact, individual physiological variations have caused agents
trained with DAS1 to not work well on a real-world FES
setting with a paralyzed subject (K. M. Jagodnik, personal
communication, June 4, 2020). Therefore, the study of the

DAS1 domain (and how to ensure that agents trained in it
generalize successfully) is an important and impactful appli-
cation motivating HCGAs. Both environments are described
in more detail in supplementary material Section J.

In each experiment, we randomly choose an accessible set
of MDPs, Macc, and a test set, Mtest. The latter is a large
set of 10,000 MDPs not accessible to the algorithm. We use
the test set as the ground truth: it can be used to determine
whether an HCGA’s returned policy is actually safe, what
that policy’s true performance is for µ, and what the differ-
ence is between its performance for the training set and for
µ.

All hyperparameters and experimental details are given in
supplementary material Section K.1.

For the plots in this section, we define J(NSF) := j (the
same definition as f(NSF)). This plotting methodology has
the advantage of showing all trials, but has the disadvan-
tage of sometimes causing the HCGA to appear to perform
significantly better or worse than the average Jµ(θc) value,
depending on the definition of j and on the frequency with
which the algorithm returns NSF. Results excluding trials
in which the algorithm returns NSF (and which therefore
do not require this definition of J(NSF)) are discussed be-
low and are available in supplementary material Section
K.3. The HCGAs in this section do not use control variates
unless otherwise specified.

Let the generalization gap be defined as the difference be-
tween the training and test performances for the algorithm’s
output θ ∈ Θ ∪ {NSF}: JMtrain(θ)− JMtest(θ).

9.1. Generalization Gridworld Results

The results of the generalization gridworld experiments are
presented in Figure 1; they demonstrate that the HCGAs’
guarantees hold. Notice that the proportion of trials in which
the HCGAs failed is below δ in all cases, except in the case
of the Student’s t-test algorithm for low values of |Macc|.
This is expected: at low values of |Macc|, the t-test HCGA’s
assumption of normality is not reasonable, so the algorithm
may return an unsafe solution more than δ(100%) of the
time. These results demonstrate empirically that the proba-
bilistic guarantees given by HCGAs hold in practice.

The fourth plot in each figure, which plots the generalization
gap, makes it evident that HCGAs are preventing overfitting
and ensuring generalization: the safety tests detect when a
candidate policy is overfit to its training set, and reject that
policy as unsafe, resulting in a significantly smaller general-
ization gap for HCGAs than for standard RL algorithms.

For the Hoeffding and the CVaR HCGAs, notice that the
number of MDPs required to reach the best plotted candidate
solution (that is, one with a generalization gap near zero) is
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(a) Hoeffding and t-test Gridworld Results (b) CVaR Gridworld Results

Figure 1. Generalization gridworld results. In all plots, the horizontal axis is the number of MDPs accessible for training and safety tests
(that is, |Macc|). All error bars represent standard error. In all plots, the phrase “Standard RL Algorithm” represents an algorithm which
does not run a safety test, and instead naively maximizes the objective. The first (top) plots show the proportion of trials in which a
solution is found (that is, trials in which the algorithm did not return NSF). The second plots in these figures show the proportion of trials
in which the algorithm fails; that is, the proportion of trials in which an unsafe solution is returned. In all experiments, δ = 0.1. The third
plots in each figure show the average returns. The fourth plots show the generalization gap. These plots were generated using 1000 trials
per data point (that is, 1000 trials for each location on the horizontal axis). All other details are discussed in supplementary material
Section K.1.

orders of magnitude less than the number of MDPs required
to consistently return a solution. This indicates that our sim-
ple heuristic of partitioning the data into two sets of equal
size is poor in these settings. By allocating fewer MDPs
to the training set and more MDPs to the safety set, one
could design an HCGA utilizing these bounds that requires
significantly fewer MDPs in Macc to return a solution.

9.2. DAS1 Results

DAS1 results using the same layout as Figure 1 are given in
Section K.2 of the supplementary material. Individual plots
for each of the eight experiments (four HCGAs run for two
environments) are given in Section K.3 of the supplementary
material (these individual plots use roughly four pages of
space, but may be easier to read in the individual format).

The DAS1 results are similar to the gridworld results and
demonstrate empirically that 1) the probabilistic guarantees
given by HCGAs hold in practice and 2) HCGAs prevent
overfitting and ensure generalization.

Notice that in both environments, the two HCGA CVaR
algorithms return nearly identical results. Because J(θ) =
E[G(θ)], this phenomenon may be common in settings for
which variances in episodic returns for each MDP are low,
but for which variances in episodic returns across the distri-
bution of MDPs are high. Those conditions will cause the
two CVaR definitions of f to take approximately the same
value. Future work will study this phenomenon further, but
the experiments make it clear that the safety guarantees hold
for both CVaR algorithms.
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9.3. Control Variate Results

We also study the effect of control variates on expected
value HCGAs. Empirical results confirm our theoretical
analysis: control variates reduce the variance of the mean
estimators without violating the HCGA safety constraints.
For more details, see supplementary material Section M.

9.4. Applicability to Computationally Expensive
Settings

Because our plots require many trials (100 or 1000 per loca-
tion on the horizontal axis in our experiments) to reasonably
show the “proportion solution found” and “proportion algo-
rithm failed” plots, we chose to perform experiments using
environments that are relatively computationally inexpen-
sive. However, when applying the HCGA framework to a
real-world problem, one must only perform one trial (not
hundreds or thousands as in our plots), which makes these
algorithms scalable and practicable for computationally ex-
pensive applications. Because of our theoretical results, one
can confidently apply HCGAs in these settings; the theo-
retical results hold whether the function approximator is
a simple Q-Table, a linear approximator, or the latest and
largest deep network architecture. Furthermore, since the
computational bottleneck tends to be training (the safety
test requires only evaluation of the candidate policies and
is thus relatively inexpensive), HCGAs are typically not
significantly more computationally expensive than running
a standard RL algorithm without the HCGA framework.

10. Conclusion
In this paper, we introduce high confidence generalization
algorithms, prove that the probabilistic guarantees given by
these algorithms hold, extend one class of these algorithms
with control variates, and show empirically that these guar-
antees hold in practice. Future work will study new types
of HCGAs as well as HCGAs in the extrapolation setting,
in which Macc is not drawn from the same distribution as
Mtest.
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A. Proof of HCGA Guarantees
Theorem 1. If Pr(b(θ,Msafety, δ) ≤ f(θ)) ≥ 1− δ, then

Pr[f(alg(Macc)) ≥ j] ≥ 1− δ.

Proof. In this proof, we will show that for all θc in Θ, Pr(f(alg(Macc)) ≥ j|Θc = θc) ≥ 1 − δ, and hence that
Pr(f(alg(Macc)) ≥ j) ≥ 1− δ, where Θc ∈ Θ is the random variable representing the candidate policy in Algorithm 1.
We consider two possible cases: 1) when f(Θc) ≥ j and 2) when f(Θc) < j. In the first case f(alg(Macc)) ≥ j always
since either alg(Macc) = θc and by assumption f(Θc) ≥ j, or alg(Macc) = NSF and by definition f(NSF) = j. Hence,
Pr(f(alg(Macc)) ≥ j|Θc = θc) = 1 ≥ 1− δ.

Next consider the second case. In this case, we have that for all θc ∈ Θ such that f(θc) < j:

Pr
(
f(alg(Macc)) ≥ j

∣∣Θc = θc
) (a)

= Pr
(
alg(Macc) = NSF

∣∣Θc = θc
)

(b)
= Pr

(
b(Θc,Msafety, δ) < j

∣∣Θc = θc
)

(c)
≥Pr

(
b(Θc,Msafety, δ) ≤ f(θc)

∣∣Θc = θc
)

= Pr
(
b(θc,Msafety, δ) ≤ f(θc)

∣∣Θc = θc
)

(d)
= Pr

(
b(θc,Msafety, δ) ≤ f(θc)

)
(e)
≥1− δ,

where (a) follows because when the candidate solution is unsafe (that is, when f(Θc) < j), f(alg(Macc)) ≥ j if and
only if alg(Macc) = NSF; (b) follows from lines 3 and 4 of Algorithm 1, which indicate that alg(Macc) = NSF if
and only if b(θc,Msafety, δ) < j; (c) follows because we are considering the second case, wherein f(θc) < j; (d) follows
because Msafety and Θc are statistically independent random variables due to Θc being computed solely from Mtrain, which
is statistically independent of Msafety, (that is, for all M1:k ∈ M, Pr(Msafety = M1:k|Θc = θc) = Pr(Msafety = M1:k));
and (e) follows from the assumption in the theorem statement that for all θ ∈ Θ, Pr(b(θ,Msafety, δ) ≤ f(θ)) ≥ 1− δ.

B. Expected Return HCGAs with Control Variates Proofs
For all proofs in this section, recall that E[(some expression involving pi)|Mi ∼ µ] means that pi are the parameters of
MDP Mi (and that therefore pi itself is random).

Property 1. For all θ ∈ Θ, for all c ∈ R, Zi is an unbiased estimator of Jµ(θ).

Proof.

E[Zi|Mi ∼ µ] =E
[
JMi

(θ)− c
(
v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ]

)∣∣∣Mi ∼ µ
]

=E[JMi
(θ)|Mi ∼ µ]− c(E[v̄θ(pi)|Mi ∼ µ]−E[v̄θ(pj)|Mj ∼ µ])

=E[JMi
(θ)|Mi ∼ µ].

Assumption 1 states that the learned control variate varies with its input (that is, that the control variant is not a constant), or,
in other words, that the variance is not zero. Formally:

Assumption 1. For the policy parameterized by θ ∈ Θ, Var(v̄θ(pi)|Mi ∼ µ) > 0.

Property 2.

argmin
c∈R

Var(Zi|Mi ∼ µ) =
E
[(
JMi(θ)−E[JMk

(θ)|Mk ∼ µ]
)(
v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ]

)∣∣∣Mi ∼ µ
]

E
[(
v̄θ(pi′)−E[v̄θ(pj′)|Mj′ ∼ µ]

)2∣∣∣Mi′ ∼ µ
] .
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Proof. For brevity, in this proof only, we write v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ] asA, and we write JMi
(θ) as J . All expectations

in this proof are given Mi ∼ µ (written out fully only on the first line), or Mi′ ∼ µ (Mi′ instead of Mi to disambiguate in
equations where there are more than one of these expectations). For example, E[v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ]|Mi ∼ µ] is
written as E[v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ]] (or simply as E[A]). Recall from the proof of Property 1 that E[A] = 0, a fact
that is exploited in the proof below.

First, we derive an expression for the variance:

Var(Zi|Mi ∼ µ) = Var(J − cA)

=E[(J − cA)2]−E[J − cA]2

=E[J2]− 2cE[JA] + c2E[A2]− (E[J ]− cE[A]︸︷︷︸
=0

)2

=E[J2]− 2cE[JA] + c2E[A2]−E[J ]2.

Minimizing with respect to c by solving for the critical points:

0 =
∂Var(Zi)

∂c

=− 2E[JA] + 2cE[A2].

Next, we verify that this critical point is a minimum. Consider the second derivative, ∂
2 Var(Zi)
∂c2 = 2E[A2]. 2E[A2] is

positive if E[A2] 6= 0. E[A2] = E[(v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ])2] = Var(v̄θ(pi)|Mi ∼ µ). By Assumption 1, E[A2] 6= 0,
so E[A2] is positive. Therefore, this critical point is a minimum. Solving for c:

c =
E[JA]

E[A2]

=
E[J(v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ])]

E[(v̄θ(pi′)−E[v̄θ(pj′)|Mj′ ∼ µ])2]
.

Consider the numerator of this fraction (for readability, we stop writing all given terms for the remainder of the proof):

E
[
J
(
v̄θ(pi)−E[v̄θ(pj)]

)]
=E[Jv̄θ(pi)]−E

[
JE[v̄θ(pj)]

]
(a)
=E[Jv̄θ(pi)]−E[J ]E[v̄θ(pj)]

= Cov(J, vθ(pi)),

where (a) results from the fact that the expectation of J is with respect to Mi, and that Mi and Mj are independent.

The covariance written as E[J(v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ])] is correct but may be numerically unstable, and so it should
not be computed in this form. An equivalent and more numerically stable form is:

E[J(v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ])] = Cov(J, vθ(pi))

=E
[(
J −E[J ]

)(
v̄θ(pi)−E[v̄θ(pj)]

)]
.

So,

c =
E
[(
J −E[J ]

)(
v̄θ(pi)−E[v̄θ(pj)]

)]
E
[(
v̄θ(pi′)−E[v̄θ(pj′)|Mj′ ∼ µ]

)2] .

Corollary 1. If v̄θ(pi) = JMi
(θ), then

argmin
c∈R

Var(Zi|Mi ∼ µ) = 1.
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Proof. By Property 2,

c =
E
[(
JMi

(θ)−E[JMk
(θ)|Mk ∼ µ]

)(
v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ]

)∣∣∣Mi ∼ µ
]

E
[(
v̄θ(pi′)−E[v̄θ(pj′)|Mj′ ∼ µ]

)2∣∣∣Mi′ ∼ µ
] .

Substituting the control variate for the objective:

c =
E
[(
v̄θ(pi)−E[v̄θ(pk)|Mk ∼ µ]

)(
v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ]

)∣∣∣Mi ∼ µ
]

E
[(
v̄θ(pi′)−E[v̄θ(pj′)|Mj′ ∼ µ]

)2∣∣∣Mi′ ∼ µ
]

=
E
[(
v̄θ(pi)−E[v̄θ(pj)|Mj ∼ µ]

)2∣∣∣Mi ∼ µ
]

E
[(
v̄θ(pi′)−E[v̄θ(pj′)|Mj′ ∼ µ]

)2∣∣∣Mi′ ∼ µ
]

=1.

C. Expected Return HCGAs with Control Variates

Algorithm 2 Expected Return HCGA with Control Variate Template
Input : Feasible set Θ, a set of MDPs Macc, user-defined threshold j, probability 1− δ, and high-confidence bounding

function b.
Output : θ ∈ Θ ∪ {NSF}

1 Partition Macc into two data sets, Mtrain and Msafety;
2 Compute a θc ∈ argmaxθ∈ΘJMtrain(θ);
3 For all Mi ∈Mtrain, compute JMi(θc);
4 Use the training data collected above (that is, for all Mi ∈Mtrain, pi and JMi(θc)) to compute some v̄θc (this is a regression

problem).
5 Ensure that v̄θc is not a constant (if it is a constant, choose a better function approximator, training or optimization algorithm,

and/or control variate hyperparameters; alternatively, use a standard HCGA without a control variate).
6 Using the whole distribution of MDP parameters from µ, estimate (or calculate exactly if possible) E[v̄θc(pj)|Mj ∼ µ]. For

brevity, define ev to be the estimate of this expectation: ev := E[v̄θc(pj)|Mj ∼ µ];

7 Estimate an optimal c value: Use the training data to estimate E
[(
JMi

(θc)−E[JMk
(θc)|Mk ∼ µ]

)(
v̄θc(pi)−ev

)∣∣∣Mi ∼ µ
]

and E[(v̄θc(pi′)−ev)2|Mi′ ∼ µ], using Jtrain(θc) to estimate E[JMk
(θc)|Mk ∼ µ]. Use these values (they are the numerator

and denominator of the following expression) to estimate

c =
E
[(
JMi

(θc)−E[JMk
(θc)|Mk ∼ µ]

)(
v̄θc(pi)−E[v̄θc(pj)|Mj ∼ µ]

)∣∣Mi ∼ µ
]

E
[(
v̄θc(pi′)−E[v̄θc(pj′)|Mj′ ∼ µ]

)2∣∣Mi′ ∼ µ
] .

Alternatively, set c = 1;
8 Define Zi′′ := JMi′′ (θc) − c(v̄θc(pi′′) − ev). In the bound computation in the next step, for MDPs M1,M2, . . . ,Mk in

Msafety, use Z1, Z2, . . . , Zk instead of JM1
(θc), JM2

(θc), . . . , JMk
(θc) to compute JMsafety(θc), σ̂J(θc,Msafety), and/or any

other relevant statistics;
9 if b(θc,Msafety, δ) ≥ j then return θc;

10 else return NSF;

Remark: it may be possible to calculate E[v̄θc(pj)|Mj ∼ µ] (ev in the algorithm above) exactly instead of estimating it. For
example, if there are finite MDPs in the support of the distribution, and the distribution is uniform over those MDPs, then it
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HCGA Safety Function and Bounding Function Intuition
Hoeffding f(θ) := Jµ(θ).

b(θ,Msafety, δ) := JMsafety(θ)−
√

ln(1/δ)/(2|Msafety|).

Safety constraint on the objective.

t-test f(θ) := Jµ(θ).

b(θ,Msafety, δ) := JMsafety(θ)−
σ̂J (θ,Msafety)t1−δ,|Msafety|−1√

|Msafety|
.

Safety constraint on the objective.

CVaR MDP f(θ) := CVaRα(JM1(θ)|M1 ∼ µ).

b(alg(Macc),Msafety, δ)

:= 1
α

∑n
i=1(Jn+1−i−Jn−i) max(0, in−

√
ln(1/δ)

2n −(1−α)).

Safety constraint on the “worst-case
MDPs” in µ. This type of HCGA
may be useful if a few rare MDPs
in supp (µ) are suspected to entail
catastrophic risks.
These HCGAs may also be useful
when attempting to transfer a pol-
icy to a distribution of MDPs, µ′,
that is similar to µ (that is, the ex-
trapolation setting). Suppose that,
due to the similarity between µ and
µ′, one can reasonably assume that
the performance of the policy for
the new setting, Jµ′(θ), will be
no worse than the performance for,
e.g., the worst 1% of MDPs sam-
pled from µ. Under this type of as-
sumption, a CVaR MDP HCGA can
be straightforwardly applied to in-
form the user whether the policy is
likely to achieve safe performance
for µ′.

CVaR Episodic f(θ) := CVaRα(GM1
(θ)|M1 ∼ µ).

b(alg(Macc),Msafety, δ)

:= 1
α

∑n
i=1(Gn+1−i−Gn−i) max(0, in−

√
ln(1/δ)

2n −(1−α)).

Safety constraint on the worst-case
episodes. This type of HCGA may
be useful if rare episodes may entail
catastrophic risk (e.g., the diabetes
setting discussed in Section 8.3).

Figure 2. A summary of the four HCGAs that we study in this work.

may be trivial to calculate ev exactly by computing v̄θ(pj) for every MDP Mj , and taking the mean of the resulting control
variate values.

D. HCGA Summary Table
In Figure 2, we provide a summary of the four HCGAs we study in this paper.

E. Background: VaR and CVaR
Value at risk (VaR) is a measure of risk originally developed as a financial metric to quantify how poorly some set of
investments might perform, excluding some proportion of worst-case scenarios. Intuitively, for some random variable X
and some proportion α, VaR is simply the α-quantile of X . Formally, for some random variable X and some proportion α,
we define VaR as:

VaRα(X) := inf{x ∈ R|Pr(X ≤ x) ≥ α}.

Some criticize VaR for being insensitive to catastrophic risks, since it ignores the worst possible outcomes (Brown, 2007).
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Figure 3. The probability density function of some continuous random variable X . The shaded region has area α. VaRα is the smallest
value such that α(100%) of samples will be less than it. CVaRα is the expected value of samples less than or equal to VaRα (that is, the
expected value of samples in the shaded region).

One solution for problems where VaR may not be a suitable measure of risk is conditional value at risk (CVaR). Intuitively,
given some random variable X and some proportion α, CVaR is the expected value of the lowest α proportion of values of
X . In other words, it is the expected value of the “tail” that VaR ignores. Formally, for some continuous random variable X
and some proportion α, we define CVaR as:

CVaRα(X) := E[X|X ≤ VaRα(X)].

For an illustration of VaR and CVaR, see Figure 3.

While this paper restricts itself to CVaR-based HCGAs, one could design VaR-based HCGAs using a high-confidence
bound on VaR. Intuitively, VaR-based HCGAs may be appropriate when one wants to ensure that some policy is safe for the
majority ((1− α)100%) of MDPs (Section 8.2) or episodes (Section 8.3), but rare, potentially catastrophic risks are either
acceptable or nonexistent. CVaR-based HCGAs may be appropriate when one cares less about the overall objective as a
measure of safety, but wants to avoid rare catastrophic risks.

F. Brown’s CVaR Bound
Let Ĉ denote the sample-based estimate of CVaRα(X): Ĉ := xdnαe − 1

nα

∑dnαe
i=1 (xdnαe − xi), where n is the sample size,

and x1, ..., xn are the order statistics of the sample (that is, the sample sorted into increasing order). This formulation is
equivalent to that of Brown (2007); see supplementary material Section I for the derivation. Brown (2007) bounds CVaR
with high confidence:

Property 4. For all δ ∈ (0, 1), if supp (X) ⊆ [a, b]: Pr

(
CVaRα(X) ≥ Ĉ−(b−a)

√
5 ln(3/δ)
αn

)
≥ 1−δ, where n is the

number of samples of X used to calculate Ĉ.

G. Left-Tail Version of Brown’s CVaR Bound
Below, we denote the left-tail CVaR that we use as CVaRLα , and the right-tail CVaR that Brown (2007) used as CVaRRα .
More formally, for a random variable X , we define left and right CVaR respectively, as:

CVaRLα(X) := E[X|X ≤ VaRLα(X)]

and
CVaRRα (X) := E[X|X ≥ VaRRα (X)],

where
VaRLα(X) := inf{x ∈ R|Pr(X ≤ x) ≥ α}

and
VaRRα (X) := sup{x ∈ R|Pr(X ≥ x) ≥ α}.
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Figure 4. A visualization of the intuition behind the proof of Property 5.

Let X1, ...Xn be n i.i.d. samples of some continuous random variable X . We denote sample-based estimates of the left and
right-tail CVaR values as

ĈL := sup
x∈R

{
x− 1

nα

n∑
i=1

max(0, x−Xi)

}
and

ĈR := inf
x∈R

{
x+

1

nα

n∑
i=1

max(0, Xi − x)

}
,

respectively.

In the proof below, we define another continuous random variable Y , such that Y := −X . See Figure 4 for an intuitive
visualization of this setting. We then these two variables to show that the left- and right-tail bounds are equivalent.

Property 5. For all δ ∈ (0, 1), if supp(X) ⊆ [a, b]:

Pr

(
CVaRL

α(X) ≥ ĈL − (b− a)

√
5 ln(3/δ)

αn

)
≥ 1− δ.

Proof. Let Y := −X . Notice that supp(Y ) ⊆ [−b,−a]. First, we show that CVaRRα (Y ) = −CVaRLα(X):

CVaRRα (Y ) =E[Y |Y ≥ VaRRα (Y )]

=E[Y |Y ≥ sup{x ∈ R|Pr(Y ≥ x) ≥ α}]
=E[−X|−X ≥ sup{x ∈ R|Pr(−X ≥ x) ≥ α}]
=E[−X|X ≤ − sup{x ∈ R|Pr(−X ≥ x) ≥ α}]
=−E[X|X ≤ − sup{x ∈ R|Pr(−X ≥ x) ≥ α}]
=−E[X|X ≤ − sup{x ∈ R|Pr(X ≤ −x) ≥ α}]
=−E[X|X ≤ inf{−x ∈ R|Pr(X ≤ −x) ≥ α}]
=−E[X|X ≤ inf{x ∈ R|Pr(X ≤ x) ≥ α}].
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Applying the left-tail definitions, we get that

CVaRRα (Y ) =−E[X|X ≤ VaRLα(X)]

=− CVaRLα(X).

Therefore

CVaRRα (Y ) = −CVaRLα(X). (4)

Next, we show that ĈLX = −ĈRY . Let X1, . . . , Xn be n i.i.d. samples of X , and Y1, . . . , Yn be n i.i.d. samples of Y , such
that Y1 := −X1, ..., Yn := −Xn.

ĈLX := sup
x∈R

{
x− 1

nα

n∑
i=1

max(0, x−Xi)

}

= sup
x∈R

{
x− 1

nα

n∑
i=1

max(0, x+ Yi)

}

=− inf
x∈R

{
−x+

1

nα

n∑
i=1

max(0, x+ Yi)

}

=− inf
y∈R

{
y +

1

nα

n∑
i=1

max(0, Yi − y)

}
=− ĈRY .

So

ĈLX = −ĈRY . (5)

Finally, we start with Brown’s (2007) right-tail bound for Y :

Pr

(
CVaRR

α (Y ) ≤ ĈRY + ((−a)− (−b))
√

5 ln(3/δ)

αn

)
≥ 1− δ.

Simplifying and applying Equations (4) and (5):

Pr

(
−CVaRL

α(X) ≤ −ĈLX + (b− a)

√
5 ln(3/δ)

αn

)
≥ 1− δ.

Pr

(
CVaRL

α(X) ≥ ĈLX − (b− a)

√
5 ln(3/δ)

αn

)
≥ 1− δ.

H. Left-Tail Version of Thomas & Learned-Miller’s CVaR Bound
In this section, we prove that the left- and right-tail bounds of Thomas & Learned-Miller (2019) are equivalent. Let
X1, . . . , Xn be n i.i.d. samples of some continuous random variable X , with supp(X) ⊆ [a,∞). Let W0 := a, and
W1, . . . ,Wn be the order statistics of the sample (that is, X1, . . . , Xn sorted in increasing order). We define CVaRLα(X)
and CVaRRα (X) as in Section G above. As in the section above, we define another continuous random variable Y , such that
Y := −X .
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Property 6. For all δ ∈ (0, .5]:

Pr

(
CVaRL

α(X) ≥W0 +
1

α

n∑
i=1

(Wn+1−i −Wn−i) max

(
0,
i

n
−
√

ln(1/δ)

2n
− (1− α)

))
≥ 1− δ.

Proof. Notice that, since Y := −X , supp(Y ) ⊆ (−∞,−a]. Let Y1, . . . , Yn be n i.i.d. samples of Y , such that Y1 :=
−X1, . . . , Yn := −Xn. Let Z1, . . . , Zn be the order statistics of the sample of Y (that is, Y1, . . . , Yn sorted in increasing
order), and let Zn+1 := −a.

Theorem 3 of Thomas & Learned-Miller (2019) states that

Pr

(
CVaRRα (Y ) ≤ Zn+1 −

1

α

n∑
i=1

(Zi+1 − Zi) max

(
0,
i

n
−
√

ln(1/δ)

2n
− (1− α)

))
≥ 1− δ.

In the proof of Property 5 above, we showed that CVaRRα (Y ) = −CVaRLα(X). So

Pr

(
−CVaRLα(X) ≤ Zn+1 −

1

α

n∑
i=1

(Zi+1 − Zi) max

(
0,
i

n
−
√

ln(1/δ)

2n
− (1− α)

))
≥ 1− δ.

Notice that Zn+1 = −a = −W0, Zn = −W1, . . . , Z2 = −Wn−1, Z1 = −Wn. That is, for j ∈ {1, 2, . . . , n, n + 1},
Zj = −Wn+1−j .

Applying these equalities:

Pr

(
−CVaRLα(X) ≤ −W0 −

1

α

n∑
i=1

(−Wn−i +Wn+1−i) max

(
0,
i

n
−
√

ln(1/δ)

2n
− (1− α)

))
≥ 1− δ,

so,

Pr

(
CVaRLα(X) ≥W0 +

1

α

n∑
i=1

(Wn+1−i −Wn−i) max

(
0,
i

n
−
√

ln(1/δ)

2n
− (1− α)

))
≥ 1− δ.

I. CVaR Estimator Simplification
For some random variable X , given some level α ∈ (0, 1) and a sample of X of size n, where x1, ..., xn are the order
statistics of the sample, let Ĉ denote the sample-based estimate of CVaRα(X). We use a definition of Ĉ that is different
from but equivalent to that of Brown (2007); our definition may be more straightforward to implement. We prove that these
two definitions are equivalent:

Property 7.

sup
x∈R

{
x− 1

nα

n∑
i=1

max(0, x− xi)

}
= xdnαe −

1

nα

dnαe∑
i=1

(
xdnαe − xi

)
.
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Proof.

Ĉ := sup
x∈R

{
x− 1

nα

n∑
i=1

max(0, x− xi)

}
(a)
=xdnαe −

1

nα

n∑
i=1

max(0, xdnαe − xi)

(b)
=xdnαe −

1

nα

dnαe∑
i=1

(
xdnαe − xi

)
,

where a) follows from the first two steps of the proof of Proposition 4.1 (Brown, 2007) (see below for their reasoning), and
b) follows from the fact that the order statistics are non-decreasing and xdnαe − xi = 0 for i = dnαe.

A brief elaboration of the reasoning of Brown (2007) for (a): define

g(x) := x− 1

nα

n∑
i=1

max(0, x− xi).

Define

h(x, i) :=


0, if xi > x;

1, if xi < x;

undefined, if xi = x.

Taking the derivative of g, for all x /∈ {x1, . . . , xn}:

dg(x)

dx
= 1− 1

nα

n∑
i=1

h(x, i).

Notice that g is continuous and that, except for the n removable discontinuities, dg(x)
dx is monotonically decreasing (including

“across” the discontinuities). Therefore, g is concave. Furthermore, notice that for all x < x1, dg(x)
dx = 1, and for all

x > xn,
dg(x)
dx = 1− 1/α, which is negative for α ∈ (0, 1). More concisely, the derivative switches signs from positive to

negative as x increases.

Therefore, supx∈R g(x) will occur either 1) when dg(x)
dx = 0 (or at points at which the left or right derivative is 0, see Figure

5) or 2) if for all x ∈ R, dg(x)
dx 6= 0, at the removable discontinuity when dg(x)

dx switches from positive to negative (as in
Figure 6). By inspection, the point x = xdnαe is the unique x ∈ R that satisfies the criteria in both cases.

J. Environment Descriptions
Generalization gridworld is a 5× 5 gridworld with deterministic transitions. The reward is −1 at every time step, except
for when the agent is in the terminal state, in which case the reward is 0. Each MDP has “cliff” squares which, if entered,
send the agent back to the starting position. A single path from the start state to the goal state is clear of cliffs in all MDPs.
Specifically, the following sequence of actions is optimal for all MDPs: RIGHT, DOWN, RIGHT, DOWN, RIGHT, DOWN,
DOWN, RIGHT. The result is that, while individual MDPs may have many optimal policies, there is only one optimal policy
for the entire set of MDPs. The range of possible returns is [−200,−7].

The dynamics and objective of dynamic arm simulator (DAS1) are fully described by Blana et al. (2009). The arm consists
of six muscles and two joints. Episodes are of fixed length, and the reward is proportional to the negative square of the
distance between the goal and the endpoint of the arm, with a slight penalty proportional to muscle activation. For DAS1,
we make the arm and goal initial state in each MDP deterministic and separate possible initial states into 704 MDPs (70
possible values of four angles, two of which describe the arm’s starting position and two of which describe the goal). We
clip the reward at each time step to be in the interval [−6, 0], so that the normalization of the objective function to the range
[0, 1] is easier (rewards less than −6 are quite rare, so this does not have much effect).
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Figure 5. An example of a g(x) for which there exists an x such that dg(x)
dx

= 0. The supremum is g(x) for all x such that the left and/or
right derivatives are 0.

Figure 6. An example of a g(x) for which there does not exist an x such that dg(x)
dx

= 0. In this case, the supremum lies at the point where
dg(x)
dx

switches from positive to negative.
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K. Full Results and Experimental Details
K.1. Experimental Details

First, we list and discuss the δ, α (for the CVaR quantile, not to be confused with stepsize), and j values used in each
experiment. In all experiments, δ = 0.1 and α = 0.2.

For the gridworld experiments, j = −10 for the Hoeffding HCGA, j = −8 for the t-test HCGA (slightly higher than the
Hoeffding experiments to highlight the failure behavior with low numbers of MDPs), and j = −30 for the CVaR HCGAs.
Notice that the CVaR j definitions are significantly lower, since they are for the worst-case tails of the distributions. In
Figure 1a above, the standard RL algorithm is plotted using the Hoeffding value, j = −10 (the j value affects the plot of the
proportion of trials for which the standard RL algorithm failed). A plot of the standard RL algorithm with the t-test value
(j = −8) is shown in Figure 8b.

For the DAS1 experiments, the Hoeffding and t-test experiments use j = −25, and the CVaR experiments use j = −60.

In all plots of average returns above, we plot trials which return NSF as j. This choice is because we defined f(j) := NSF
and because, intuitively, we have defined NSF to be safe and j is the minimum definition of safe in each experiment. In
the plots in Section K.3 below, we provide an alternative interpretation of the same data: excluding NSF trials rather than
plotting them as j.

There are four phases to each experiment: 1) the training phase, in which the candidate policy is trained; 2) the training
evaluation phase, in which the candidate policy’s performance is evaluated on the training MDPs; 3) the safety test phase, in
which the policy is run on the safety MDPs, and the safety is test applied; and 4) the testing phase, in which the candidate
policy is run and evaluated on some test set of MDPs. There are always 10,000 test MDPs. For the results to be valid, it is
important that sufficient numbers of episodes are run for the training evaluation, safety test, and testing phases.

The number of episodes used for each phase follows. For generalization gridworld, we ran 1024 training episodes per MDP.
For DAS1, we ran 10,000 training episodes per MDP.

For the training phase, all MDPs are shuffled into a random order, and each is run once in that order. This process repeats
until the maximum number of episodes is run.

For all experiments, the number of episodes per MDP run in the training evaluation, safety test, and testing phases was
d10,000/ne, where n is the number of MDPs used in the phase (that is, n is 10,000 for the testing phase, |Mtrain| for
the training evaluation phase, and |Msafety| for the safety testing phase). Notice that, for n � 10,000, this results in
approximately 10,000 episodes in the phase. For larger n, this formula also ensures that at least one episode is run for each
MDP.

The episodic CVaR HCGA is an exception to the above rule: in the safety test phase, each MDP is only run for one episode,
since the safety test samples episodic returns. Sampling a return from each MDP more than once would result in samples
not drawn i.i.d. from the distribution of episodic returns (which would invalidate the safety test and the probabilistic safety
guarantee).

For generalization gridworld, the optimization algorithm used is an actor-critic with eligibility traces (see Sutton &
Barto (2018), Section 13.5), a tabular state-action value function, and a softmax policy. The optimization algorithm’s
hyperparameters were: actor step size = 0.137731127022912, critic step size = 0.31442900745165847, γ = 1.0, and
λ = 0.23372572419318238. We also experimented with REINFORCE (Williams, 1992), and the outcomes were nearly
identical, with all guarantees holding.

For DAS1, the optimization algorithm used was REINFORCE (Williams, 1992), with eligibility traces, a linear function
approximator using the Fourier basis (Konidaris et al., 2011), and a softmax policy. The optimization algorithm’s hyper-
parameters were: γ = 1.0, step size = 5.736495301650456(10−6), λ = 0.9082498629094096, order = 2, and maximum
coupled variables = 2.

In practice, one would tune the hyperparameters of the optimization algorithm using the training set (and not the safety
set). For the purposes of these experiments, we used the entire underlying distribution µ to tune the hyperparameters of
the optimization algorithm. This does not break any of our guarantees, since we have access to the entire true underlying
distribution. This methodology is also necessary, since, for each trial, the training set is different, and it is not computationally
feasible to do a hyperparameter search for each of the hundreds of thousands of trials represented by our eight experiments.
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(a) Hoeffding and t-test DAS1 results (b) CVaR DAS1 Results

Figure 7. See the caption of the Figure 1 for a general description of the plots. These plots were generated using 100 trials per data point.
Where the MDP CVaR curves are not visible, they are overlapping with episodic CVaR curves. Notice that the CVaR HCGAs have lower
plotted return than the standard RL algorithm. As discussed in supplementary material Section K.1, this is an artifact of plotting the
J(NSF) = j. Alternate plots excluding these trials are given in Figure 11 in the supplementary material. These alternative plots show
that, excluding NSF trials, the average returns of CVaR HCGAs are higher than those of the standard RL algorithm.

Again, in practice, when one wishes to apply an HCGA and has access to Mtrain and Msafety, but not Mtest or the true
distribution, µ, it is important to do hyperparameter tuning only on Mtrain and not Msafety (otherwise the safety guarantees
will be invalid). It is also computationally feasible to do this in practice as this search will only have to be run once (rather
than hundreds of thousands of times that would have been required by our experiments).

K.2. DAS1 Results

For comparison purposes, the results of the DAS1 experiments in Figure 7 are presented in a layout similar to that of Figure
1 in Section 9. Both environments’ results are presented more completely in Section K.3.

K.3. Full Results

In this section, we provide the results for all eight experiments (four HCGAs run for two environments) in eight individual
plots. This shows the results of individual experiments more clearly, and allows us to plot the t-test HCGA experiments on a
more appropriate linear scale (as opposed to the initial portion of the log scale they are plotted on in Figures 1a and 7a).

We also provide an additional plot for each experiment: the return with NSF trials excluded. That is, instead of plotting the
return of NSF trials as j, we exclude those trials from the plot. Notice that, in these alternate plots, some curves do not begin
until after |Macc| is sufficiently large to cause algorithms to return solutions that are not NSF.
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The plots are shown in Figures 8, 9, 10, and 11.

(a) Full Hoeffding Gridworld Results (b) Full t-test Gridworld Results

Figure 8. Full Hoeffding and t-test Gridworld Results
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(a) Full CVaR MDP HCGA Gridworld Results (b) Full CVaR Episodic HCGA Gridworld Results

Figure 9. Full CVaR HCGAs Gridworld Results
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(a) Full Hoeffding DAS1 Results (b) Full t-test DAS1 Results

Figure 10. Full Hoeffding and t-test DAS1 Results
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(a) Full CVaR MDP HCGA DAS1 Results (b) Full CVaR Episodic HCGA DAS1 Results

Figure 11. Full CVaR HCGAs DAS1 Results

L. Example HCGA
In this section, we give the algorithm represented by the bounding function defined in (2). This serves as an example of how
to apply bounding functions to Algorithm 1 to form a complete HCGA.

Algorithm 3 Expected Return HCGA, Hoeffding Variant
Input : Feasible set Θ, a set of MDPs Macc, user-defined threshold j, and probability 1− δ.
Output : θ ∈ Θ ∪ {NSF}

1 Partition Macc into two data sets, Mtrain and Msafety;
2 Compute a θc ∈ argmaxθ∈ΘJMtrain(θ);

3 if JMsafety(θc)−
√

ln(1/δ)
2|Msafety| ≥ j then return θc;

4 else return No Solution Found;

M. Expected Return HCGAs with Control Variates: Results and Analysis
In this section, we present and analyze empirical results for the t-test HCGA with control variates. In Sections M.2 and
M.3, for procedural gridworld and DAS1 respectively, we demonstrate empirically that the use of control variates with
HCGAs reduces the standard deviation of the mean estimates, and that this modification does not violate the HCGAs’ safety
guarantees. We analyze these results and make a prediction about the kinds of environment distributions for which control



High Confidence Generalization for Reinforcement Learning

variates will significantly reduce the rate at which HCGAs return NSF. Finally, in Section M.4, we use this prediction to
construct and study an MDP distribution. For this MDP distribution, control variates result in a significant decrease in the
proportion of trials for which NSF is returned.

M.1. Experiment Details

We only study the t-test HCGA in this section; recall the bounds for the two expected value HCGAs above:

Hoeffding: b(θ,Msafety, δ) := JMsafety(θ)−
√

ln(1/δ)/(2|Msafety|).

t-test: b(θ,Msafety, δ) := JMsafety(θ)−
σ̂J(θ,Msafety)t1−δ,|Msafety|−1√

|Msafety|
.

We study only the t-test HCGA because it has a standard deviation term in the bound that is desirable to minimize, and the
Hoeffding HCGA does not have such a term. Ignoring computational cost, using control variates for the Hoeffding HCGA
could be considered a strict improvement over not using control variates: control variates will reduce the variance of the
mean estimates without compromising the safety guarantees. However, control variates will not usually substantially affect
the accuracy of the mean estimate and so cannot be expected to improve the Hoeffding HCGA significantly (unlike the t-test
HCGA, which, because of the standard deviation term in the bound, may be substantially improved by control variates).

Recall the two methods for choosing a c value: estimate c =
E

[(
JMi (θ)−E[JMk (θ)|Mk∼µ]

)(
v̄θ(pi)−E[v̄θ(pj)|Mj∼µ]

)∣∣∣Mi∼µ
]

E

[(
v̄θ(pi′ )−E[v̄θ(pj′ )|Mj′∼µ]

)2∣∣∣Mi′∼µ
] ,

or choose c = 1. Below, we refer to these variants as the optimal c estimation variant, and the c = 1 variant, respectively.
We study both variants below.

In all experiments in this section, |Msafety| ≥ 32 (so the horizontal axis, |Macc|, begins at 2|Msafety| = |Macc| = 64). This
is because the t-test bound assumes that the performances of θc for the MDPs in Msafety are normally distributed. This
assumption may not be reasonable, particularly for small values of |Msafety|. However, by the central limit theorem, it is
often a reasonable assumption for large values of |Msafety|.

For simplicity, we use the k-nearest neighbors algorithm for the control variate. We chose k = 3 based on intuition, and did
not tune or try any other values of this hyperparameter (note that, regardless of the value of this hyperparameter, the safety
guarantees will hold and the Zi values based on the control variate will be unbiased estimators of Jµ(θ)). As mentioned
above, the control variate function approximator, supervised learning algorithm, optimizer, and hyperparameters can be
arbitrary. For example, a deep neural network or linear function approximator trained with stochastic gradient descent may
also be suitable for many problem settings.

M.2. Control Variates: Generalization Gridworld Results

Consider Figure 12, which shows the generalization gridworld results for HCGAs using control variates. Notice that both
variants reduce the standard deviation of the mean estimators compared to the HCGA with no control variate (first plot).
However, this fact does not help the HCGAs return more solutions for this environment (third plot), since

JMsafety(θ)�
σ̂J(θ,Msafety)t1−δ,|Msafety|−1√

|Msafety|
.

In other words, the
σ̂J (θ,Msafety)t1−δ,|Msafety|−1√

|Msafety|
term is already insignificant compared to JMsafety(θ), so decreasing it more using

control variates does not help significantly in practice. Also notice that the optimal c estimates are approximately one
(second plot); this fact explains the similar performance of the two control variate variants, and adds empirical support to
the theory that c = 1 (Corollary 1) is a useful rule. Finally, notice that the control variate HCGAs do not violate the safety
guarantees (fourth plot).

As shown in the fourth plot of Figure 12, lowering the standard deviation of the mean estimators for the safety test does
not significantly reduce the rate at which the HCGA returns NSF for the generalization gridworld. This is because, for all
environments in the distribution, J(θ∗) is the same value, where θ∗ are the parameters of the optimal policy. That is, for all



High Confidence Generalization for Reinforcement Learning

Figure 12. Results for control variates for generalization gridworld. Each location on the horizontal axis corresponds to 1000 trials. Where
the c = 1 control variate curve is not visible, it is overlapping with the optimal c estimation curve.
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MDPs m ∈ supp (µ), Jm(θ∗) = −7 (before return/objective normalization). In this environment, when the HCGA has
enough data to pass the safety test, the HCGA tends to learn a policy very close to the optimal policy. Because the standard
deviation of the objectives, σ̂J , is close to zero, the reduction of the standard deviation of the mean estimates is not helpful
in practice for this environment. As we show below, control variates may help more in practice for environment distributions
with more variation in the objective functions of their MDPs (given typical candidate policies).

Note, for the generalization gridworld results only: for calculated c values in approximately 0.1% of trials, the denominator
of the c calculation is exactly 0, resulting in an undefined value of c. In these rare cases, we set c = 1 based on Corollary 1.
Notice that, for these rare trials, this method disregards the step in Algorithm 2 that says “ensure that v̄θc is not a constant”;
the control variate is a constant in these cases, which results in the calculated c value being undefined. Because our goal is
to show properties of these algorithms across many trials (not to apply them to a real-world problem in practice), we use
this method for this subsection only. Since this denominator value is never zero in the environments below, this method is
only necessary for this generalization gridworld subsection, not for the subsections below. (This is because, given typical
candidate policies, the standard deviation between the objectives of different MDPs tends to be at least an order of magnitude
lower for generalization gridworld than for the other two environments below. This low standard deviation can sometimes
result in a constant control variate, since the function the control variate is supposed to approximate is a constant or nearly a
constant.)

M.3. Control Variates: DAS1 Results

Figure 13 shows the DAS1 results for HCGAs using control variates; the results are similar to the generalization gridworld
results. Both variants reduce the variance of the mean estimators compared to the HCGA with no control variate. Also
notice that, once again, the optimal c estimates are approximately one (second plot), which adds further empirical support to
the theory that c = 1 (Corollary 1) is a useful rule. Additionally, notice that the control variate HCGAs do not violate the
safety guarantees (fourth plot).

Like the results for the generalization gridworld, these results do not show that the control variates result in a significant
increase in the proportion of trials in which a solution is found.

Consideration of these results naturally leads to the observation that control variates might be more useful in practice for an
environment distribution with much higher standard deviation between the objectives of different MDPs (for optimal or near
optimal policies). We explore this observation in the next subsection.

M.4. Control Variates: Stochastic Generalization Gridworld Results

We modified the generalization gridworld MDP distribution so that optimal or near optimal policies would result in higher
standard deviation between the objectives of different MDPs: Half of MDPs in the modified distribution are exactly like the
MDPs in the unmodified distribution. The other half of MDPs have a stochasticity in their transition functions of 0.5. This
means that with probability 0.5, the agent would move as in the normal generalization gridworld transition function. With
probability 0.5, the environment will ignore the agent’s action, and force it to move in a random direction (or attempt to
move in that direction, since the boundaries of the environments or the cliffs may interfere). There are four directions, so the
result is that the agent has a 0.625 probability of moving in its “intended” direction, and a 0.125 probability of moving in
one of the other three directions. We call this the stochastic generalization gridworld.

To account for the changed dynamics, we changed the definition of safety for this environment by decreasing the value of
a safe j and increasing the probability with which a safe solution must be returned: 1− δ := 0.99 and j := −23 (before
return/objective normalization).

As shown in Figure 14, the results match our hypothesis; control variates are more useful in practice for an MDP distribution
like the stochastic generalization gridworld. The “proportion solution found” plot shows that, for |Macc| = 64 and
|Macc| = 128, the control variates substantially reduce the probability that NSF is returned. As in the experiments above,
the safety guarantees were not violated, and the optimal c estimation value was approximately 1.

These results empirically confirm our theory that control variates can reduce the value of the standard deviation of the mean
estimates for expected return HCGAs, and that this modification does not violate the HCGA safety guarantees. Furthermore,
these results show that the control variate extension may be particularly useful for environments which have high variance in
objectives between MDPs (for a typical candidate policy).
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Figure 13. Results for control variates for DAS1. Each location on the horizontal axis corresponds to 100 trials. Where the c = 1 control
variate curve is not visible, it is overlapping with the optimal c estimation curve.
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Figure 14. Results for control variates for stochastic generalization gridworld. Each location on the horizontal axis corresponds to 1000
trials. Where the c = 1 control variate curve is not visible, it is overlapping with the optimal c estimation curve.


